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We examine the linear stability of elliptical columns of uniform potential vorticity 
subject to two-dimensional (horizontal) straining within a rapidly rotating, stratified 
(quasi-geostrophic) fluid. We find that horizontal straining can promote the exponen- 
tial growth of three-dimensional disturbances when the vortex height-to-width aspect 
ratio exceeds, qualitatively, three times the ratio of the Coriolis parameter to the 
buoyancy frequency. This instability is not related to the usual baroclinic instability 
which operates on shallow vortex columns whose potential vorticity changes sign 
with height. The nonlinear development of these instabilities is investigated numer- 
ically using a high-resolution contour surgery algorithm. Simulations are conducted 
for both a Boussinesq (ocean-like) fluid and a compressible (atmospheric-like) fluid 
having exponentially decreasing density with height. The simulations reveal a generic 
nonlinear development that results in a semi-ellipsoidal baroclinic vortex dome at the 
lower surface and, in the case of a Boussinesq fluid, another such dome at the upper 
surface. 

The related problem of two interacting vortex columns is also examined. A generic 
three-dimensional instability and nonlinear development occurs no matter how great 
the distance between the vortex columns, provided that they are sufficiently tall. 

Our results may bear upon the observed structure of many atmospheric and 
oceanic vortices, whose height-to-width aspect ratios are consistent with our findings. 
Remarkably, even strongly ageostrophic vortices, such as tropical cyclones, fit the 
pattern. Our results furthermore re-open questions about the long-time nature of 
freely decaying quasi-geostrophic turbulence, for which recent simulations indicate 
a progressive two-dimensionalization by vortex alignment, while earlier simulations 
have indicated long-lived baroclinic vortices, not unlike what we find here. 

1. Introduction 
Coherent vortex structures play an important role in geophysical and astrophysical 

fluid dynamics. For example, the Earth’s wintertime stratosphere is dominated by a 
huge vortex, called the ‘polar vortex’, having a radius of several thousand kilometres. 
It spins up as the pole cools at the onset of winter and is destroyed in early spring by a 
combination of solar heating and dynamical instabilities. In mid-winter, in the absence 
of solar heating, dissipation processes are weak and the vortex acquires a remarkably 
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steep edge gradient which permits it to be readily identified. The robustness of the 
stratospheric polar vortex is an issue of international concern because it bears strongly 
on ozone depletion (see McIntyre 1995 for a detailed account). 

There are other important examples in ocean dynamics, e.g. surface-trapped eddies 
and the ‘meddies’ that are formed at mid-depth from the salt tongues issuing from the 
Mediterranean Sea or are spun off the major ocean fronts, such as the Gulf Stream 
and the Kuroshio Current, in the atmospheres of other planets, e.g. Jupiter’s Great 
Red Spot, Venus’ Polar Dipole and Neptune’s Great Dark Spot, and almost certainly 
in astrophysical fluid dynamics, in the accretion discs of galaxies and solar systems. It 
is no wonder that vortex dynamics is a popular, intensively studied topic. Still, many 
questions remain. 

One of the most important questions concerns the three-dimensional structure of 
such vortices. What controls this structure? A simple, perhaps unexpected answer is 
discovered here in an idealized model problem which, however, appears to be more 
generally applicable. 

The simplest relevant model system is quasi-geostrophic vortex dynamics. Quasi- 
geostrophy is a useful, commonly employed approximation valid for a rapidly rotating, 
stratified fluid (for a general description see Pedlosky 1979 and Houghton 1986; for 
a mathematical discussion, see Stegner & Zeitlin 1995; for ‘contour dynamics’ and 
an application to the stratospheric polar vortex, see Dritschel & Saravanan 1994). 
The real simplifying feature of quasi-geostrophy is the omission of high-speed gravity 
waves. Additionally, there exists a linear-operator relationship between the quasi- 
geostrophic (QG) potential vorticity (hereafter PV) and the streamfunction, from 
which one can deduce all properties of the flow (i.e. the velocity and the (potential) 
temperature or density field) - this is the so-called ‘invertibility principle’ (Hoskins, 
McIntyre & Robertson). 

We study here the three-dimensional linear stability and nonlinear evolution of two- 
dimensional columnar vortices containing uniform PV. Such vortices are the simplest 
one may consider, since stability or instability is decided purely from the dynamics of 
the vortex boundary (a two-dimensional surface). We examine, in particular, elliptical 
vortices, columns of uniform PV having an elliptical cross section. Elliptical vortices 
are the structures most frequently found in high-Reynolds-number two-dimensional 
flows; inevitably, vortices are subject to external strain due to the surrounding flow 
field, which, to leading order, appears locally as an incompressible, irrotational linear 
velocity field and which deforms vortices into elliptical shapes. An elliptical vortex 
remains elliptical in such a flow ~ this result is due to Moore & Saffman (1971) 
and Kida (1981) and has been exploited extensively in simplified models of two- 
dimensional vortex dynamics by Melander, Zabusky & Stycek (1986) and Legras & 
Dritschel (1991). An ellipse possesses the advantage of being, together with the circle, 
the simplest two-dimensional equilibrium shape. Little is known, however, about the 
stability of vortex columns of this or any other shape; even the two-dimensional 
stability problem is not well understood. We do know that a circular column is stable 
to finite-amplitude disturbances as a consequence of angular momentum conservation 
(Dritschel 1988), but no such result is available for an elliptical column. 

Much is known about the linear stability of the elliptical vortex. After Kirchhoff 
(1876) demonstrated that a uniform elliptical vortex rotates uniformly without change 
of shape, Love (1893) determined that such a vortex is linearly unstable (to two- 
dimensional disturbances) if its aspect ratio is less than f. At this aspect ratio, an 
instability with three-fold symmetry erupts, which is followed by one with four-fold 
symmetry at a yet smaller aspect ratio, etc. In the nonlinear regime, the vortex casts 
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off tongues of vorticity and, after a complex period of filamentation, a nearly elliptical 
vortex re-emerges (Dritschel 1986). 

Recently, Miyazaki & Hanazaki (1 994) investigated the linear three-dimensional 
QG stability of Kirchhoff’s (freely rotating) elliptical vortex. Their results form a 
basis for the present study and are reviewed and elaborated below in $2. They showed 
that an elliptical vortex, even of small eccentricity, can be unstable both to a long- 
(vertical) wavelength twisting disturbance and to an intermediate-wavelength tilting 
disturbance. We say ‘can be’ since, in practice, the vertical extent of the fluid is 
confined, restricting both the set of possible disturbance wavelengths and the length 
of the longest wave. These instabilities intensify with decreasing vortex aspect ratio 
without the appearance of new modes of instability until the aspect ratio is less than 
about f , when instabilities of two-dimensional origin are encountered (details can be 
found below in $2). 

An apparently similar instability operating on ellipsoids of uniform PV in a Boussi- 
nesq QG fluid, unbounded horizontally and vertically, was uncovered earlier by 
Meacham (1992). He concluded that sufficiently tall vortices must be nearly circular 
to be stable, consistent with the results of Miyazaki & Hanazaki (1994). The nonlinear 
development of this instability on tall vortices was not investigated. 

The case of an elliptical vortex column in an external straining flow is considerably 
more complicated. The two-dimensional stability alone is a formidable problem 
(Dritschel 1990) and, to simplify matters, we here restrict our attention to the steady 
(non-oscillating) elliptical vortices, for which there is a relationship between the 
vortex aspect ratio and the external strain flow parameters. (Under slowly changing 
external conditions, vortices are frequently observed to pass through a series of 
near-equilibrium states ~ see Legras & Dritschel (1993) and Dritschel (1995).) The 
linear two-dimensional stability of these vortices depends on two parameters and is 
reviewed in $2.2 (the freely rotating elliptical vortex is included as a special case). By 
considering the linear three-dimensional stability, as we do in sfj2.3 and 2.4, we are 
adding one more parameter, the disturbance’s vertical wavenumber, and the amount 
of numerical computation necessary to map out just the linear stability is staggering. 

The complementary problem of the linear three-dimensional stability of a strained 
elliptical vortex in an unstrntzfified fluid was recently examined by Bayly, Holm & 
Lifschitz (1995). They used the method of geometrical optics to determine extensive 
domains of instability to high-wavenumber (small-scale) disturbances. (The freely 
rotating case has been studied without restriction to high wavenumbers by Miyazaki, 
Imai & Fukumoto 1995.) This instability appears to be fkndamentally different from 
that examined in the present work; we have found that the presence of stratification 
stabilizes high-wavenumber disturbances. 

Linear stability is only part of the problem. Given that there are unstable regions 
in the parameter space, a complete treatment of the problem requires an examination 
of the nonlinear evolution. What does an unstable basic state do; where does it 
go? The answer may help to understand what controls the structure of vortices. 
In $3 of this paper, we exhibit the development of a variety of unstable flows, 
contrasting a Boussinesq, uniform-density fluid with a compressible, exponentially 
decreasing-density fluid. It is discovered that a single type of three-dimensional 
structure emerges. 

The results found for steady-strained ellipses in this paper can be used to draw 
conclusions concerning the three-dimensional stability of two well-separated columns 
of vorticity. This is done in $4 for two columns of like-signed and opposite-signed PV 
in a Boussinesq fluid, and some numerical simulations are performed for illustration. 
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We conclude in $5 by showing how our results may explain the observed structure 
of atmospheric and oceanic vortices. In this context, we outline a number of applied 
research problems stemming from the present results. We also discuss the implications 
of our results for QG turbulence. The persistence of three-dimensional structures, 
we argue, requires much weaker dissipation than presently employed by conventional 
numerical models. 

2. Linear stability 

The equations governing quasi-geostrophic flow (see Hoskins et al. 1985, $5(b)) are 

2.1. Basic problem formulation 

(1c) 
a w  
az - = 0 at z = 0 and H ,  

av av 
dY ax u=- -  and u = - - ,  

where q(x,y,z,t) is the QG potential vorticity (PV), f is the Coriolis parameter 
(twice the planetary angular velocity projected normal to the planet’s surface), f o  is a 
reference value o f f ,  Vi is the horizontal Laplace operator, y is the streamfunction 
(proportional to the perturbation geopotential), u = (u, u )  is the horizontal velocity 
(there is no vertical advection of q ) ,  p ~ ( z )  is the basic-state density profile with height 
z (actually, z is log-pressure, the fluid being in hydrostatic equilibrium), and N(z) is 
the buoyancy frequency of a neutral particle undergoing vertical oscillations. In this 
paper, we restrict the analysis to constant f ,  that is f = fo, and henceforth absorb f 
into q. The problem is considerably more difficult for variable f (e.g. a P-plane) due 
to the inherent unsteadiness of the basic state (see e.g. Sutyrin et ul. 1994), though 
a recent numerical breakthrough has made it accessible at least to direct numerical 
simulation (Dritschel & Ambaum 1996). 

The basic state is a (height-independent) elliptical column 

x2 y2 - - + - = I  
u2 b2 

of uniform PV, q = 1, bounded between two rigid surfaces at z = 0 and H ,  and 
immersed in a background two-dimensional straining flow of the general form 

ueXt = (y + Q)y and ueXt = (y - 5 2 ) ~  (2) 

where y is the strain rate (or deformation rate) and Q is the background rotation, 
or, more appropriately, the rotation rate of the strain axes (we have adopted a frame 
of reference in which these axes are fixed; in this frame, q is supplemented by -252 
everywhere). This straining flow is the same at all heights z. 

Any three-dimensional solution may be written as a superposition of linearly 
independent vertical modes, arising from the separability of the horizontal and 
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vertical parts of the ‘inversion operator’ in (16); that is, putting 

with 

where the at 3 0 are the separation constants, one arrives at a series of two- 
dimensional problems, one for each n :  

where qn(x, y, t )  is the projection of the PV onto the nth vertical mode. Here, l / a n  
is often referred to the ‘internal radius of deformation’ for mode n. By virtue of the 
boundary conditions at z = 0 and H ,  it is always true that a. = 0 (this would not be 
true if the fluid had a free surface; moreover, the basic state would no longer be a 
precisely elliptical column). The vertically uniform basic state with q = qo = 1 - 2 0  
Vz has 

inside the vortex. Any disturbed state is generally a sum of this basic state and a 
perturbation of the form ( 3 ) .  The perturbation imparts three-dimensionality, which 
may be enhanced through dynamical instability. 

In the absence of disturbances, the vortex will remain an elliptical column (Kida 
1981), (the flow is then two-dimensional), though it will generally exhibit unsteady 
motion unless its major axis is aligned with the x-axis and 0 is chosen as a specific 
function of y and the vortex cross-sectional aspect ratio 3, = b/a  d 1, namely 

- this makes w a constant on the boundary of the vortex (Moore & Saffman 1971). 
We consider only these steady basic states in this paper. 

Linear stability is examined by subjecting the vortex boundary to infinitesimal 
three-dimensional disturbances. Such disturbances arise naturally as a result of het- 
erogeneities in the external flow field, and are sufficient to describe any exponentially 
amplifying mode of instability. 

We can now examine linear stability, mode by mode, via a series of two-dimensional 
problems, in each of which the projected PV, qn, is a two-dimensional displacement 
of an elliptical contour. The procedure is essentially identical to that used to examine 
purely two-dimensional stability, described in Appendix B of Dritschel(1995), the only 
difference being that the two-dimensional disturbance inversion operator is Vi - a: 
instead of just V i .  This entails using the Green function --KO(anr) in place of logr,  
where r is two-dimensional distance, in the disturbance evolution equation, equation 
(B2b) of Dritschel (1995). 

For the sake of clarity, the procedure is briefly outlined here. The equilibrium 
boundary of the patch, xe(0) = (a cos 8, b sin 8) is disturbed to 
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where q(6, t )  is a scalar disturbance function (a displacement normal to the equilibrium 
vortex boundary). This function satisfies 

where q is the PV inside the vortex (unity here) and where we have put CI, = k in 
the argument of K O ;  we will subsequently refer to k as the vertical wavenumber of the 
disturbance, even though it corresponds to a sinusoidal disturbance only when both 
N and po are constant. In this formula, Q, = dO/dt along the equilibrium boundary; 
SZ, is independent of 6' for the elliptical basic state used here, and satisfies 

A 
0, = (1 - 20)- 

1 +I2  

I 2Y I _ _ _ - ~  - - 
(1 + n ) 2  1 - R 2 '  

The disturbance function is expanded in a truncated sum of sinusoidal functions of 
6 multiplied by an exponential time factor: 

M 

q(e,  t )  = e-'"* C A,  cos me + B, sin me 
m= 1 

where (T is generally complex, the imaginary part of which, if positive, indicates expo- 
nential disturbance growth and hence linear instability. Both (T and the amplitudes A,  
and B, are determined numerically using a matrix-eigenvalue method. A truncation 
of M = 20 was found to give at least three decimal place accuracy except for 1 4 1 
and k 9 1. 

2.2. Two-dimensional stability 
For k = 0 (the two-dimensional stability), there is no coupling between different m 
modes, and one can derive the stability results analytically (Moore & Saffman 1971; 
Dritschel 1990) : 

- the growth rates (Im(o,) = (TJ are plotted in figure l(a) as a function of y and 
I ;  figure l(b) shows the corresponding background rotation rate 0, from (5 ) .  An 
alternative view of the instability growth rates is given in figure l(c,d), which shows 
oi(Q,y) for kR = 0 in two distinct parts of the parameter space, differentiated by 
the sign of a I / d y .  No such fold in parameter space occurs when using y and A as 
independent parameters. 

The results for y = 0 (no strain) were obtained by Love (1893) and can be found 
along the vertical line dividing figure l(a) in half; one sees the m = 3 instability for 
1 < 3 followed by m = 4, etc., for decreasing I .  For y slightly negative, one encounters 
the MZ = 2 instability tongue, but the instabilities there lead only to vacillation (the 
vortex latches on to a periodic, pulsating solution which is still an elliptical vortex; 
Kida (1981), Dritschel (1990)). The tongue associated with m = 1 is irrelevant for the 
strictly two-dimensional vortex; m = 1 corresponds to a displacement of the vortex, 
which grows exponentially at the rate (y2 - Q2)'I2 when IyI > 101. It is not irrelevant 
for k > 0 as we will see shortly. There are no instabilities for 0 > (notably the PV 
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RGURE 1. ( a )  Growth rates cL(y, i) of two-dimensional disturbances to an elliptical vortex column. 
The contour interval is  ACT^ = 0.01 and the minimum level shown is gmm = 0.0001. This contouring 
scheme is used in all subsequent growth rate maps. ( h )  Equilibrium angular velocity Q(y, i )  
corresponding to ( a ) .  AQ = 0.05 and Q E [-;, 41. (c ,d )  Growth rates, as in ( a ) ,  but now plotted as 
a function of Q and y, in two distinct parts of the folded parameter space; (c) shows oi(Q,y) when 
?A/?? < 0, and ( d )  shows ~ , (Q , ;J )  when (?i/c?y > 0. 

is then everywhere negative). Broadly speaking, vortices with small eccentricity are 
two-dimensionally stable. 

2.3. Three-dimensional stability of a freely rotating ellipse 
For k > 0 (the three-dimensional stability), different m modes in general couple, with 
a strength that grows with increasing k .  In this subsection, we review the results for 
y = 0, first obtained by Miyazaki & Hanazaki (1994). We have reproduced their 
results quantitatively using a different numerical solution method, and the growth 
rates obtained are plotted in figure 2 as a function of kR and i, where R = (ab)'I2 
is the mean radius of the vortex. Their surprising result, which motivated our study, 
is indicated by the two tongues of instability emanating from the 2 = 1 axis (where 
the vortex is circular, and stable) at kR = 0 and kR 2 1.7046. These are both three- 
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FIGURE 2. Growth rates ai(kR, A) of three-dimensional disturbances to a freely rotating elliptical 
column (i.e. y = 0). 

dimensional instabilities, and are distinct from the one of two-dimensional origin seen 
emerging from the k R  = 0 axis when I I  < i. 

The intermediate-wavelength instability is odd, involving primarily m = 1, and thus 
would be seen as a displacement of the axis of the column by an amount proportional 
to the associated vertical mode, cp,(z), if the mean radius R of the vortex column is 
such as to allow a,R to be in the range of instability. The long-wavelength instability is 
even, involving primarily m = 2. It would be seen as a twisting of the vortex column, 
since the disturbance in each plane is out of phase with the basic elliptical shape 
(Miyazaki & Hanazaki 1994). This long-wave instability connects with the m = 2 
stability tongue bordering y = 0 in figure l(a). The connection of the intermediate- 
wavelength instability to the m = 1 tongue in figure l ( a )  is less evident, but it will 
be demonstrated below. Note that the intermediate-wavelength instability has higher 
growth rates than the long-wave one for 2 2  0.4. 

It is noteworthy that no reference has been made to particular horizontal or vertical 
scales; these instabilities afflict columns of particular height-to-width aspect ratios, 
fixed by the dimensionless number kR. For a Boussinesq, constant-N fluid, k is 
restricted to one of the an, given by n n f / N H ,  n = 0, 1, 2, .... The combination N H / f  
is often called the ‘Rossby radius of deformation’ L R ,  and in terms of LR, we have 
k R  = nnR/LR,  showing that R must be small compared with LR, especially for the 
long-wavelength instability. In terms of the vortex height-to-width aspect ratio, we 
have H/2R = ( n n / 2 k R ) ( f / N ) ,  showing that the column must be tall on the scale 
of Prandtl’s ratio, f /N,  the natural vertical-to-horizontal ratio appearing in the QG 
equations, cf. (1  b). 

Some predictions for the nonlinear development of these instabilities were made by 
Miyazaki & Hanazaki (1994), who argued that the conservation of angular impulse 
used to prove the finite-amplitude stability of a circular column in a three-dimensional 
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QG fluid (Dritschel 1988) would ultimately limit the growth of disturbances to an 
elliptical column (this is verified below in $3). One might be tempted to conclude that 
their newly found instability is then of little consequence. Our interest grew from 
the recognition that, in the presence of external strain, angular impulse is no longer 
conserved and thus cannot be used to prove finite-amplitude stability for any basic 
state. The presence of strain, however weak, fundamentally alters the problem. 

2.4. Three-dimensional stability of’ a steady, strained ellipse 
We now display the results for various weak values of the strain rate, y. Results for 
y = $0.001, *0.02 and k0.0.5 are displayed in figure 3(a-f). This figure rises out 
of figure l(a). for k = 0, along lines of constant y .  For small positive y, figure 3(b), 
the instability tongues are displaced to the right (shorter waves), particularly their 
tips near i = 1 (compare with figure 2 for y = 0).  In fact, complete stabilization 
occurs for i > (1  - 2y)/(1 + 2 q ) ,  i.e. when SZ 3 i. For small negative y, figure 3(a) ,  
the instability tongues are displaced to the left (longer waves). In particular, the 
intermediate-wavelength tongue on the right turns sharply toward the k = 0 axis 
and connects to the m = 1 tongue in figure l(a). This displacement to the left or 
to the right increases with increasing l i j l .  For 7 < 0, the instabilities intensify while 
being displaced downward in 2, but no new modes of instability appear (the upper 
tongue always emerges from the m = 1 tongue for k = 0). For 7 > 0, the instabilities 
diminish while also being displaced downward in i,, and in this case new tongues 
appear, emerging from tongues having m > 2 when k = 0. One can see the origin of 
these tongues on the right-hand side of figure l(a). In figure 3(f), for example, one 
can see a trace of the m = 4 tongue emerging from k = 0, and then, from left to right 
along the bottom, m = 3, m = 2 and m = 1; however, these instabilities may develop 
only on highly eccentric (small i) vortices. 

An orthogonal view of the results is given in figure 4(a-c), in which i is held fixed 
while 7 and kR are varied (the results in figure 4(c) are used to initialize the nonlinear 
simulations in the following section). As 3, approaches 1, the region of instability 
shrinks rapidly and the growth rates diminish, leaving the tongue of m = 1 origin as 
the only significant instability. 

In summary, elliptical vortices close to a circular form (1.2 +) are maximally 
unstable to a disturbance largely consisting of a displacement mode (m = l), which 
is manifested as a tilting of the vortex column. The column must however be tall 
enough, or narrow enough, to accommodate the vertical structure of the disturbance. 

3. Nonlinear evolution 
The linear stability analysis presented above helps to delineate the region of 

parameter space where three-dimensional development may occur. But the significance 
of this instability cannot be assessed without direct numerical simulation using the 
nonlinear equations. We have performed many such simulations in the two distinct 
parts of parameter space shown in figures l(c) and l (d ) .  Remarkably, we have found 
little qualitative difference between the two parts of parameter space, despite their 
different origins. 

3.1. Numerics and initialization 
The PV distribution being piecewise uniform, contour dynamics affords the simplest 
means of exploring the nonlinear development of the instabilities described above. 
High-resolution simulations are conducted using the multi-layer/level QG contour 
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FIGURE 3. Growth rates cri(kR, 1) of three-dimensional disturbances to a strained elliptical column. 

(a) y = -0.001, ( b )  y = $0.001, (c) y = -0.02, (d )  y = +0.02, (e )  y = -0.05 and (f)  y = $0.05. 

surgery algorithm developed by Dritschel & Saravanan (1994). 'Contour surgery' 
is the name given to the numerically-refined version of 'contour dynamics' having 
an automatic, controlled and well-tested means of removing fine-scale filamentary 
vorticity (see Dritschel 1989 for details). 

Simulations are performed for two basic types of density stratification: (i) Boussi- 
nesq (uniform mean density) and (ii) compressible (exponentially decreasing density 
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FIGURE 4. Growth rates a,(kR,  y )  of three-dimensional disturbances to a strained elliptical column. 
(a)  1 = 0.5, ( h )  1 = 0.7 and ( c )  i = 0.8. 

with height). In both cases, a constant buoyancy frequency N is taken for simplicity. 
The first case is often taken to model the ocean and the second the stratosphere. Full 
details of these cases, the basic equations, and the numerics for the QG code may be 
found in Dritschel & Saravanan (1994). 

In each case, the flow is bounded vertically by two rigid, horizontal planes. As 
discussed in $2, this gives rise to a discrete spectrum of vertical wavenumbers k (given 
below), and thus in practice the stability of the vortex depends on the boundaries and 
on the basic density stratification. 

In the Boussinesq case, the basic height scale is taken to be the depth of the domain, 
H ,  while in the compressible case, it is taken to be a 'density scale-height', i.e. the basic 
density in this case is po(z) = posexp(-z/H), where PO., is the density at the bottom 
of the domain, z = 0. The vertical extent of the domain in the compressible case is 
limited to c H ,  with c = 5.86, to mimic typical stratospheric conditions (Dritschel & 
Saravanan 1994). Note that the natural horizontal scale is LR = N H / f .  

For the Boussinesq case, 

nn 
LR cp,(z) = coscI,z; a,, = -, (7) 
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while for the compressible case, 
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( n  > 0). The first vertical mode cpo is always independent of height and is often called 
the 'barotropic mode'. For this mode, CIO = 0. 

To examine any particular instability, say one occurring at the dimensionless 
vertical wavenumber kR = f ,  we choose the mean vortex radius R (= (ab)'I2) for 
which a,R = &, for some n, usually n = 1, the gravest baroclinic mode. Then, 
R = &LR/71 in the Boussinesq case and R N LLR/0.785 in the compressible case (using 
c = 5.86). Note that the full height-to-width aspect ratio is only 46% greater in the 
compressible case than in the Boussinesq case for the same &. 

In all the simulations to be presented in this section, 40 vertical layers or levels are 
used. We originally used 20 vertical layers, and we found that the PV structures, even 
at fine scales, are not significantly modified upon doubling the vertical resolution. The 
same conclusion was reached comparing 10 and 20 layers in Dritschel & Saravanan 
(1994). See also Dritschel & Ambaum (1996). The initial vortex aspect ratio A is fixed 
at 0.8. This is only a weak perturbation to a circular shape; more eccentric ellipses 
are characterized by more vigorous instabilities, the nonlinear aspects of which are 
qualitatively the same as for A = 0.8. For a chosen value of the strain rate y, the 
wavenumber kR is chosen to give maximum linear instability - see figure 4(c). 

The PV is set to 471 so that the basic unit of time is a (circular) vortex rotation 
period. The integration time step At = 1/40. As for the horizontal spatial resolution, 
the large-scale length L is set equal to the mean vortex radius, R, and the dimensionless 
maximum node separation on the contours ,u = 0.15, corresponding to 55 points per 
contour at t = 0. The scale of surgery 6 = ,u2L/4 = 0.005625R (Dritschel 1989). 

In each simulation, the vortex is randomly disturbed initially by displacing the x- 
and y-coordinates of each computational node by a uniformly distributed random 
number between -a and a, with a = 0.01pR. The vortices we are dealing with are 
in general very flat, so for clarity of presentation, we have chosen to draw them in a 
stretched vertical scale, N z / f .  

3.2. Initially freely rotating ellipses 
For i = 0.8, there are both long-wavelength (LW) and intermediate-wavelength (IW) 
instabilities, with peak growth rates at f 1: 0.2720 and 1.7075, respectively (see figure 
2 or lc). The IW instability is stronger if there exists a vertical mode with an 
appropriate wavelength, and it is seen to dominate the LW instability in simulations 
conducted with kR = 0.2720, even down to an aspect ratio of i. It suffices to show 
the IW instability growing on the gravest baroclinic mode. In a Boussinesq fluid, 
figure 5(a), the column simply tilts over then nearly recovers its initial barotropic form 
before repeating the process again. There is no indication that the column will break 
down; indeed there is no irreversible behaviour at all. This vacillation also occurs in 
the LW simulation, albeit on a higher baroclinic mode. In a compressible fluid, on 

FIGURE 5. (a) Evolution of a freely rotating vortex column in a Boussinesq fluid with rr 1.7075 
(top view). Time advances to the right and downwards; t = t ,  = 0 in the first frame, and successive 
frames differ by Ato = 20 time units. (b)  As in (a) but for a compressible fluid. Here, and in all 
subsequent figures, the flow is viewed from an angle of 60" from the zenith, and height is multiplied 
by Nl f .  (ti = 41 and At, = 4.) 
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FIGURE 6. (a)  Evolution of a strained column ( Q / y  = -1) in a Boussinesq fluid with 'v 0.3582. 
(ti = 20 and Ar" = 2.) (b)  As in (a)  but for a compressible fluid. ( r l  = 13 and Ar" = 2.) 

the other hand, the upper part of the vortex is ravaged, see figure 5(b). This is where 
the density is weak and where disturbances naturally amplify most (see (8)). It takes 
little energy to greatly disrupt this part of the vortex. The attrition of the vortex top, 
to an even greater degree, also occurs in the corresponding LW simulation, owing to 
the greater vortex height-to-width aspect ratio. 

3.3. Initially steady, strained ellipses 
Three types of external straining flows are illustrated, having D = --y (pure adverse 
shear), -iy and -3y .  These choices are motivated by an analysis in $4 of the typical 
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straining flows that occur in multiple vortex interactions. Vortex columns in straining 
flows with Q / y  3 -1 (including positive values; there is progressive stabilization 
toward Q / y  = 1 and complete stability above this value; all flows with Q / y  3 0 are 
maximally unstable at = 0) have been found to evolve in a qualitatively similar 
way. The flow for Q = -7 will serve to illustrate this. For ;1 = 0.8, y 2: -0.04444, 
the maximum instability occurs at k = k, = 0.3582. Figures 6(a )  and 6(b)  show the 
evolution in a Boussinesq and in a compressible fluid, respectively, in a reference 
frame moving with the bottom part of the vortex column. In each case, the column 
is progressively tilted, until, in a Boussinesq fluid, two identical surface vortices form 
and move apart (the top one is not shown), or, in a compressible fluid, only one 
surface vortex forms in the dense fluid at the bottom. The boundaries clearly play 
an important role, providing greater stability than the interior. Even in a simulation 
designed to favour the second baroclinic mode (not shown), which in a Boussinesq 
fluid leads momentarily to three vortices, two at the boundaries and one in the middle, 
the vortex in the middle is sheared out vertically, and the surface vortices remain. 

A close inspection of the bottom vortices in these two simulations reveals a height- 
to-mean radius aspect ratio of approximately 2.4 in the Boussinesq case and 3.3 in 
the compressible case. It is remarkable that these ratios are observed (within 20%) in 
all the simulations performed. 

When Q / . j  < -1, there is a qualitative change in the evolution. The straining flow 
undergoes a change in topology, as exhibited by its corresponding streamfunction, 

A *  

from hyperbolic to elliptic. As a result, if a column breaks apart, the background 
flow will not permit the pieces to drift away indefinitely. 

This is illustrated for Q = --$y (and 2 = 0.8) in figures 7(a) and 7(b), for a 
Boussinesq and a compressible fluid, respectively. In this case y N -0.04077 and 
k,  2 0.4508. In a Boussinesq fluid, the column tilts over as before, but the separation 
of the top and bottom parts of the column is arrested, and the vortices that form 
there move back toward the origin and tear apart the mass of filamentary debris 
in the middle as they pass each other. In a compressible fluid (figure 7h) ,  a similar 
evolution is observed, except that only a bottom vortex remains, moving around in 
an elliptical orbit. The entire upper part of the vortex is rapidly shredded, though it 
takes longer than for the middle part. 

For more extreme ratios of Q / y ,  one sees the same type of behavior as in the 
previous case. For example, consider Q = -37, for which y N -0.03268 and 
k ,  z 0.6528. Figures 8(a)  and 8(b)  illustrate the flow evolution in a Boussinesq fluid 
and in a compressible fluid. Relative to the previous cases, the vortices that form at 
the domain boundaries move in more tightly confined, less eccentric orbits, clearly 
controlled by the external straining flow. 

A 

A 

4. The three-dimensional instability of two interacting vortices 
We now apply the results of the previous sections to the interaction of two columns 

of PV. Each column gives rise to a straining flow in the vicinity of the other, and, 
consequently, one or both of the columns may be rendered unstable. 

We consider two columns of cross-sectional areas A1 and A2, and of PV q1 and 
q 2  separated by a distance d from centre to centre. The equilibrium shapes can be 
calculated in detail using contour dynamics (Dritschel 1995), but here, in order to 
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FIGURE 7. (a )  Evolution of a strained column ( Q / y  = -; j in a Boussinesq fluid with f 2: 0.4508. 
(t i  = 26.5 and Atc = 2.) (bj As in (a) but for a compressible fluid. ( t i  = 19 and At, = 2.) 



make use of the results of previous sections, we approximate the equilibrium shapes 
by ellipses, using the elliptical model (Legras & Dritschel 1991) to calculate the 
equilibrium aspect ratios /1, and i2 (see figure 9). This is an excellent approximation 
for widely separated vortices, and it is this situation that most interests us here since 
widely-separated vortices can be unstable in a three-dimensional QG fluid while stable 
in a two-dimensional one. 

A similar approximation is used to calculate the linear stability of the vortices: 
each vortex will be examined independently (but taking into account the straining 
flow produced by the other) rather than jointly. The validity of these approximations 
is checked by comparison with a full contour-dynamical treatment (i.e. using detailed 
boundary shapes and joint stability). This comparison gives us a deeper understanding 
of vortex stability. 

Finally in this section, several vortex interactions are illustrated by direct numerical 
simulation. These permit the identification of common evolutionary sequences and 
give a hint at what nearly inviscid QG turbulence may be like. 
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(b)  

FIGURE 8. (a)  Evolution of a strained column ( Q / y  = -3) in a Boussinesq fluid with k ‘v 0.5528. 
( t i  = 24 and Atti = 2.) ( h )  As in (a) but for a compressible fluid. (tl = 15.5 and AtL, = 2.) 

4.1. Equilibrium shapes 
The equilibria, in the form of two ellipses (figure 9), are calculated using the simplest 
form of the elliptical model equations. Two discrete vortices are used per vortex, 
K = 2 in Legras & Dritschel (1991). This simplest model gives results which are 
indistinguishable from contour dynamics as regards the onset of two-dimensional 
vortex merger. These equations are most conveniently expressed in the coordinates 
2, the vortex centre ( X  + iY), and b, the vortex ‘ellipticity’, defined by 

& = ; ( a 2 - b ) e  2 2i4+ , 

where $ is the orientation of the major axis with respect to the positive x-axis (see 
figure 10). Defining K = qA/27c and F = (a2b2 + ( c ? ( ~ ) ~ / ~  = :(a2 + b2), the elliptical 
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FIGURE 9. Schematic diagram of two ellipses in equilibrium. 

FIGURE 10. Schematic diagram for an arbitrarily oriented ellipse. 
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model equations for a pair 
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of interacting vortices, (Z ,8 )  and (Z’,  d’), are 

dZ  
dt 
- = zZ* - iQZ + ti’[dBC]* (9a) 

d 8  
- = 2[i(~/(ab + F )  - Q)8 + aF] + ~FK’[ (B  +&’)el* 
dt 

where 

(9c) A = z ’ - z ;  B - A  2 -:(&+€’); c = ~ / ( B ~ - G & ’ )  

- the asterisk denotes complex conjugation. For generality, an external straining field 
is included through the terms involving a = ye2’$$, where y is the strain rate and 
4$ is the angle between the principal axis of strain and the positive x-axis, and a 
background rotation is included through the terms involving 8. 

An equilibrium is sought for two vortices lying along the x-axis ( Y  = Y ’  = 0) and 
having symmetry with respect to the x-axis ( 4  = 4’ = 0). We require that the two 
vortex centres be separated by a distance d and that the centre of vorticity be at the 
origin (excluding the case with K + K’ = 0). These two conditions determine Z and 2’ 
( X  and X ’ )  as 

and the conditions of equilibrium (d&/dt = 0 and d&’/dt = 0) give two nonlinear 
equations for the remaining two variables 8 and 8’ (whereas both dZ/dt = 0 and 
dZ’/dt = 0 give a single linear equation for determining 8 in terms of the solution 
variables). They are efficiently solved iteratively using a guess for Q and 8’ everywhere 
in (9.1b) except where these variables explicitly appear in the first term on the right- 
hand side. The first guess is € = 8’ = 0, and successive solutions are used as guesses 
until € and 8’ converge to 8 decimal places (the rate of convergence is exponential). 

Once the solution is obtained, the strain produced by one vortex on the other is 
diagnosed by 

which can be seen to be the correct value by comparison with the term involving a 
(here absent) uniform external strain cy in (9.1~).  The rotation rate of the strain axes, 
Q ,  is determined as part of the iteration procedure. 

We thus see that two interacting vortices can be regarded as two independent 
vortices in a particular rotating uniform external strain field. The results of the 
previous sections are thus relevant to the interaction of two vortices (indeed to the 
interaction of any number of vortices). Thus one immediate conclusion is that well- 
separated vortices, which are stable to two-dimensional disturbances, may be unstable 
to three-dimensional disturbances. 

It is instructive to understand the nature of the rotating strain field produced by 
one vortex in the vicinity the other. To a first approximation (see (lo)), y = -src’/A2 
and y’ = -sK/A’, where the factor s, equal to +1 for like-signed vortices and 
-1 for opposite-signed ones, arises from the orientation of the vortices (like-signed 
vortices have semi-major axes lying along the line passing through the vortex centres, 
while opposite-signed vortices have them lying perpendicular to it). Likewise, Q = 
( K +  .’)/AZ. In the previous sections, these rate quantities were made dimensionless on 
the PV value in the vortex, here q or q’. Thus, the dimensionless strain and background 
rotation rates for the unprimed vortex would be -s~’/qd* and ( ~ + ~ ’ ) / q d ~ .  Likewise, 
those for the primed vortex would be -s~/q‘d’ and ( K + K ’ ) / ~ ’ A * .  These dimensionless 

y = K”(B + &’)/(B2 - 88’)]*, (10) 
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FIGURE 11. Comparison between the growth rates obtained using the elliptical model (solid lines) 
and those obtained using a full contour-dynamical treatment (dotted lines) for two equal-PV vortices 
having an area ratio of 0.7. (a) d = 5R, ( b )  d = 3R. 

quantities were referred to as y and 52 in the previous sections, and we return to those 
meanings presently. 

For two identical vortices, K = K’,  we see that 52 = -27, while for two opposite 
vortices, K = -K’, we have 52 = 0. For K = +K’, we have Q = -3y for the smaller 
vortex and Q = - i y  for the larger, while for K = -{K’,  we have 52 = ++y for the 
smaller vortex and Q = -7 for the larger. In no case can Q / y  exceed 1. 5 2 / y  = 1 
corresponds to a pure cooperative shear. From these results, we can give a physical 
interpretation to the straining flows considered in the previous section. 

4.2. Linear stability 
The approximate linear stability of the system of two columnar vortices, of equal and 
of opposite-signed PV, can be inferred from the results of $2, i.e. from the stability of 
each vortex in the fixed strain field of the other. The results in a particular case are 
compared to a full contour-dynamical treatment of the problem, using equilibrium 
vortex shapes calculated by contour dynamics (Dritschel 1995) and joint stability, 
computed as described in $2.1. 

First, let us examine the comparison between the approximate and full treatment 
of the problem. For two like-signed vortices of cross-sectional area ratio 0.7 and total 
area xR2, the growth rate versus i = kR, for d = 5R and d = 3R, is shown in figures 
ll(a) and l l (b) ,  respectively, with dotted lines for the full results and solid lines for 
the approximate results. Though there is a clear discrepancy, the results for a single 
vortex in strain do give at least a qualitative guide to the joint stability of the vortices. 
The maximum growth rates differ by about 10% for the upper curves and between 
20% and 30% for the lower curves. 

The discrepancy is due to the neglected coupling between the disturbances on the 
two vortices in the single-vortex stability analysis. Since the vortices are not greatly 
different from a circular shape, the approximate coupling between the vortices, for a 
mode with azimuthal wavenumber m, would be expected to scale with K,(kd) ,  where 
K ,  is the mth-order modified Bessel function. For small argument, K ,  N (Rid)", 
which is the two-dimensional coupling strength. However, we see in the figures that 
kd = (kR)(d/R) = i ( d / R ) ?  1, and for kd 9 1, K ,  - (kd)-Il2exp(-kd), so that the 
coupling becomes exponentially weak with increasing kd. Looking at figures 1 l ( a )  and 
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FIGURE 12. The evolution of two identical vortex columns, each of cross-sectional area inR2,  
separated by d = 5R initially, and with R chosen so that f = 0 . 2 4 .  ( t l  = 37.5 and AtU = 2.) 

1l(b),  it may be noticed that the two sets of results for d = 5R do not compare any 
better than those for d = 3R, contrary to what might be expected. The explanation 
is that kd is similar in the two cases, so the mode-coupling strength is similar. The 
discrepancy is not a function of d / R  alone. 

The conclusion is that we can approximately describe the instability of a two- 
column system in terms of the instability of a single column in strain. Contour plots 
of growth rate as a function of k R  and d / R  can be shown, but do not reveal any 
surprises: the larger vortex is always less unstable because it is less deformed (A is 
closer to unity). The growth rates of disturbances on the smaller vortex always exceed, 
up to several times, the growth rates of disturbances on the larger vortex. The true 
difference is actually greater than the single-column problem indicates - refer back to 
figure 11 for the comparison with the two-column problem. For like-signed vortices, 
the peak growth rates for the smaller vortex occur at higher kR than for the larger 
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FIGURF 13 The evolution of two equal-PV vortex columns of area ratio x = i, total area nR2, and 
separated by d = 5R initially, with = 02,/5 ( t l  = 45 and Atl = 2 )  

vortex. For opposite-signed vortices, the peak growth rates for the smaller vortex 
always occur at k = 0; however, the range of unstable wavenumbers extends beyond 
the corresponding range for the larger vortex. 

4.3. Nonlinear evolution 
We next examine several examples of the interaction of two vortex columns, initially 
in approximate equilibrium, in a Boussinesq fluid. In the first series of simulations, 
the two columns have the same PV, have a combined area of nR2, and are separated 
by a distance d = 5R from centre to centre. The value o f f  is chosen so that the 
smaller vortex is maximally unstable; if R2 is the smaller vortex radius, this occurs 
very near to kR2 = 0.2 or f = 0.2R/R2 = 0.2[(1 + ~ x ) / a ] ' / ~ ,  where a is the vortex area 
ratio. 

Figure 12 shows the evolution of two identical columns, a = 1, in a rotating frame 
of reference in which undisturbed columns would remain stationary. Each vortex 
initially experiences a straining flow having Q = -2y. The two columns tilt, as in 
the previous single-column simulations, bringing the columns closer together at the 
bottom, where they rotate faster, leading to a double-helix structure. The parts at the 
bottom collide, merging into a coherent compound vortex of a semi-ellipsoidal shape 
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. .  

FIGURE 14. As in figure 13, except c( = 4 and f = 0.4. (ti = 35.5 and At" = 4.) 

within a blanket of encircling filamentary debris. Two baroclinic vortices also remain 
at the upper surface, and the PV in the middle becomes progressively shredded and 
disorganized. In a compressible fluid (not shown), only a bottom vortex forms. 

Figure 13 shows the evolution for area ratio CI = i. The initial straining field has 
the form D = -iy in the vicinity of the larger vortex (cf. figure 7a), and Q = -37 in 
the vicinity of the smaller (cf. figure 8a). The initial evolution again displays a tilting 
of the columns, though here the smaller column tilts to a greater degree. The columns 
wind around each other, and the bottom parts merge together into a single compound 
vortex, as in the previous simulation. In this simulation, the semi-ellipsoidal form 
of the bottom vortex is more evident, though it is masked by a sloping dome of 
filaments. Again, two robust baroclinic vortices form at the upper surface, and the 
PV in the middle gets shredded. 

Upon further decreasing the area ratio, a qualitative change takes place - see figure 
14 for c( = $. (Initially, l2 = -$y is experienced by the larger vortex and D = -4y is 
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FIGURE 15. As in figure 13, except = and = 0 . 2 4 .  ( t l  = 47 and At, = 4.) 

experienced by the smaller.) First of all, the two columns approach at the top instead 
of the bottom. In fact, in a Boussinesq fluid, either surface is equally favoured; 
another disturbance might have caused the vortices to approach at the bottom. The 
more significant change is the nature of the collision: the larger vortex column does 
not break up, though it is severely deformed (note the presence of short vertical 
waves). The upper part of the smaller vortex is completely strained out, and there 
is an insignificant change in the cross-sectional area of the larger vortex. Part of the 
smaller vortex remains at the lower surface, which appears about to shorten further. 

As a final case, figure 15 shows the evolution for an even smaller area ratio, a = i. 
(Initially, D = -$y is experienced by the larger vortex and D = -6y is experienced by 
the smaller.) The columns now revert back to colliding at the bottom. This simulation 
is similar to the previous one, though here the larger column is much more weakly 
disturbed, and the complete straining out of the smaller is more clearly seen. 

It is remarkable that these three-dimensional interactions exhibit the same five 
regimes of interactions observed in two-dimensional (Dritschel & Waugh 1992), often 
in combination (at different heights). In figure 15, we have elastic interaction at the 
top, partial straining out below that, and complete straining out all the way to the 
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FIGURE 16. The evolution of two equal-area, opposite-Py vortex columns, each of cross-sectional 
area i nR2 ,  separated by d = 3R initially, and k = 0.2. (ti = 43 and Atu = 4.) 

bottom (figure 14 is just the reverse). In figures 12 and 13, we have in addition partial 
merger and complete merger near the bottom of the domain, i.e. all five regimes in 
one calculation! 

To change tack, consider the interaction of two columns of opposite PV. As 
above, we take the total area of the columns to be nR2 and separate them by a 
distance d = 3R from centre to centre. The vortices are closer than in the like-signed 
interactions above to give comparable instability wavelengths. Figure 16 shows the 
evolution of two equal-sized columns, CI = 1 (corresponding to 52 = 0), with R chosen 
so that f = 0.2. The columns tilt and form vortices at the top and bottom boundaries, 
as occurs in single-vortex simulations having 52 = 0 (not shown), which subsequently 
pair and travel apart in a direction perpendicular to the original direction followed 
by the two columns. 

with f = An. (Initially, 
52 = -y is experienced by the larger vortex and 52 = i y  is experienced by the 
smaller.) Though the smaller column is more greatly deformed early on, both 
columns split vertically, and the four resulting baroclinic vortices, mismatched in 
each part of the domain, move about in a complicated pattern. There is remarkably 
little filamentary debris generated in these opposite-signed vortex interactions, and 
the vortices attached to the surfaces are significantly taller than their counterparts in 
the like-signed interactions (figures 12 to 15). The vortices here are also much more 
circular (due to the strength and the nature of the straining flow) which accounts for 
their greater vertical extent. 

Figure 17 shows the evolution for an area ratio CI = 
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FIGURE 17. As in figure 16, but for area ratio ct = and f = hn. ( t l  = 45.5 and AtL = 2.) 

Just above the area ratio c( = f ,  the vortex interaction changes character - see 
7 

figure 18 for Y. = when k = 0.34. (Initially, 52 = -3y is experienced by the larger 
vortex and 52 = :y is experienced by the smaller.) Now, only the smaller column 
breaks apart. The larger vortex remains intact despite a substantial tilt. At a = 0.3 
(not shown), the larger vortex breaks apart, as in figure 17. 

5.  Discussion 
This paper has examined the three-dimensional stability of both freely rotating and 

strained elliptical columns of uniform potential vorticity in a quasi-geostrophic fluid. 
The freely-rotating case was examined previously by Miyazaki & Hanazaki (19941, 
who determined the linear stability characteristics. Here, we have also examined 
the nonlinear evolution, using a high-resolution contour surgery code (Dritschel & 
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FIGURE 18. As in figure 16, but for area ratio c( = f and f = 0.34. (t ,  = 44 and At, = 4.) 

Saravanan 1994), in both a Boussinesq and a compressible fluid having constant 
buoyancy frequency. 

In the absence of strain, three-dimensional instability may occur for tall vortices 
arbitrarily close to a circular form (when such vortices are stable to two-dimensional 
disturbances). However, this instability does not break up the vortex column, but 
rather leads to vacillation and a limited amount of filamentation. Even in a compress- 
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ible fluid, where the upper part of the vortex is ravaged, a core of coherent vorticity 
persists. 

In the presense of strain, however, this three-dimensional instability causes a break- 
down of the vortex column. A common evolutionary sequence has been identified: a 
tilting of the vortex column followed by the formation of a baroclinic vortex dome 
at the bottom and, for a Boussinesq fluid, a symmetrical vortex dome at the top. In a 
compressible fluid, a vortex dome cannot form in the low-density part of the domain 
due to the stronger effect of the straining flow there. 

The results for strain were shown to be related to the interaction between two vortex 
columns. Nonlinear simulations were performed for a Boussinesq fluid. Like-signed 
columns were shown to tilt initially, consistent with the results found for uniform 
external straining, and then strongly interact with each other at one of the surfaces, 
resulting in a single wider baroclinic vortex there for area ratios exceeding one third. 
For smaller area ratios, much of the smaller column is twisted about and dispersed 
around the larger column, leaving the latter intact. Part of the smaller vortex survives 
at one of the boundaries and orbits the larger vortex. 

For opposite-signed columns, the lower and upper parts split apart and pair with 
their neighbours, again resulting in baroclinic vortex domes attached to the domain 
boundaries, for area ratios exceeding one quarter. For smaller area ratios, the larger 
vortex remains unsplit. The vortices are generally taller than those found in like- 
signed interactions due to their more circular shape, and this is a consequence of the 
weaker strength and less-obtrusive nature of the straining field felt in opposite-signed 
interactions. 

A principal conclusion is that, if a vortex column is experiencing two-dimensional 
strain, which is inevitable in either a multi-vortex environment or e.g. in the presence 
of topographic forcing, and if the column is narrow enough (of height-to-width aspect 
ratio exceeding about 3 f / N ) ,  then the vortex column will break down into one or two 
baroclinic boundary vortices (which may subsequently merge with other boundary 
vortices). 

Is this observed? Hua & Haidvogel (1986) reported the development of baroclinic 
vortices of comparable height-to-width aspect ratios in simulations of Boussinesq QG 
turbulence maintained by baroclinic instability (by surface temperature gradients at 
the upper and lower surfaces). In higher-resolution simulations of unforced (freely 
decaying) Boussinesq QG turbulence, McWilliams (1989, 1990) showed that baroclinic 
vortices are much more likely to be found at the top and bottom boundaries than in 
the middle. His data analysis furthermore revealed that the average height-to-width 
aspect ratio of such vortices is approximately 1.7f/N (this is comparable to the value 
of 2 . 4 f / N  found here for the vortex domes emerging from the columnar instability). 
McWilliams (1990) attributed the breakdown of tall columns to vertical shear. The 
present study has shown that horizontal shear is sufficient. 

More recently, McWilliams, Weiss & Yavneh (1994) have suggested that the pro- 
cess of vortex ‘alignment’ (Polvani 1991; Viera 1995) will result in approximately 
columnar vortices at long times (as suggested by Rhines 1979 but not observed by 
Hua & Haidvogel 1986 nor by McWilliams 1989). The present study, for a nearly- 
dissipationless fluid, favours rather the original picture of vortex domes attached to 
the domain boundaries with persistently disorganized, thinning filamentary debris 
between (this has recently been confirmed in the work of Dritschel & Ambaum 
1996). We suggest that the accumulative effect of horizontal dissipation, which is 
not insignificant in McWilliams et al. simulation, biases the flow to become more 
barotropic. As the vortices spread horizontally, they can more easily align vertically 
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and thereby grow in height. Would the same be observed at much lower levels of dissi- 
pation, when vortex collisions may result in little if any horizontal spreading, judging 
from nearly dissipationless simulations of two-dimensional turbulence (Dritschel 1993, 
1995)? 

Elements of this instability are also evident in the two-layer simulations of Polvani 
(1991). He studied the alignment of two vortex patches, one in each layer, of identical 
PV and initially circular, by placing the centres of the patches a certain distance 
apart and performing contour dynamical simulations of the evolution. He found 
that alignment does not occur in the ‘weakly coupled’ limit, when the radius of 
deformation is larger than the initial vortex radius. The inverse radius of deformation 
in that study is identical to k in the present one, showing that kR < 1 results in no 
alignment. He argues that the existence of a nearby (in parameter space) linearly 
stable, circular column prevents alignment, but the present study suggests rather that 
it is due to the existence of a nearby linearly unstable, elliptical column. In fact, we 
conducted a two-layer simulation of an initially elliptical column, and it does exhibit 
de-alignment, then re-alignment, and so on nearly periodically. 

More recently, Viera (1995) studied the alignment of a tilted three-dimensional 
column of uniform PV, of finite vertical extent, in a horizontally and vertically 
unbounded Boussinesq QG fluid. The tallest vortex he considered had a height- 
to-width aspect ratio of f / N ,  and this vortex exhibited rapid initial alignment (at 
early times; a longer simulation appears to be required). This height-to-width aspect 
ratio is the minimum required for the instability of a freely rotating elliptical column 
between rigid surfaces, which we have seen exhibits vacillation, like in the two-layer 
simulation mentioned previously. It is difficult to draw further conclusions, since 
Viera (1995) considered a vertically unbounded fluid. 

In real, naturally occurring flows, the development of this columnar instability 
would be difficult to observe, since it would likely take place simultaneously with 
vortex formation, such as the spinning off of a smaller vortex from a larger, and 
would thus not be interpreted as an instability. However, the height-to-width aspect 
ratios of typical atmospheric and oceanic vortices do satisfy the constraint that they 
be less than about 3f/N. For example, the stratospheric polar vortex is normally 
about 6 scale heights tall and 3 Rossby radii wide, giving it an aspect ratio of about 
2 f / N .  The surface vortices spun off the Gulf Stream and the Kuroshio Current also 
fit the pattern. Remarkably, even tropical cyclones in their decay stage (when the 
convection has largely halted) - which are not QG vortices - have a height-to-width 
aspect ratio of about 3 f / N  (meaning 3 scale heights tall and 1 deformation radius 
wide; see Shapiro & Franklin 1994). Finally, primitive-equation simulations of vortex 
merger by Wang & Holland (1995) exhibit remarkably similar patterns of behavior 
to those seen in the present QG simulations. It might not be a coincidence, and it 
motivates a closer examination of the stability of tall vortex columns in general. 

A number of research questions are raised. How does this instability limit the 
height of vortices over topography (fixed as in the ocean, variable as at the base 
of the stratosphere)? A previous study using QG dynamics to study the effect of 
topographic forcing on the polar vortex (Dritschel & Saravanan 1994) concluded that 
the forcing is predominantly two-dimensional in character, at least if the horizontal 
scale of the forcing is comparable to the scale of the vortex. Hence, one should see 
the columnar instability, manifested in the destruction of the upper part of the vortex, 
if the domain height is extended. This has been confirmed (D. W. Waugh, personal 
communication), and a quantitative study is underway. 

Another question is the effect of using a free upper surface rather than a rigid lid. 
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In this case, the boundary condition there gets modified to 

iilp/az + B(lp /H)  = 0 

where B = f 2 L i / g H ,  and g is the gravitational acceleration. For B 4 1, the surface 
again looks rigid. In fact, B 4 1 for typical ocean vortices having a horizontal scale 
of LR. For much larger vortices, such as vortices in the atmospheres of other planets, 
it is possible to have B NN 1. Exactly what happens at the upper surface as a result of 
a columnar vortex instability needs to be examined. The basic state used in this paper 
is no longer appropriate, since there is no two-dimensional (vertically independent) 
mode for B > 0. One can still find a basic state (ye(x,  y ) $ , ( z ) ,  q,(x, Y ) $ ~ ( Z ) )  consisting 
of a vortex column of uniform qe in an external straining flow, only it must satisfy 
V$pe-cx:lpe = qe, where a1 > 0 is the inverse deformation radius for the gravest vertical 
mode &. Such solutions have been calculated by Polvani, Flier1 & Zabusky (1989). 

The apparently greater robustness of baroclinic boundary vortices compared to 
those in the interior is another topic which deserves study. By subjecting initially 
circular vortices of various height-to-width aspect ratios to a slowly growing shear, 
we expect to find that the vortex will destabilize at some critical shear by shedding 
its vertical extremity(ies), and thereby become stouter. We expect to determine a 
relationship between the critical shear and the vortex height-to-width aspect ratio, for 
both boundary and interior vortices. 

The effect of a planetary vorticity gradient (variable f )  also merits study. The basic 
state used here is no longer steady, and the initial (barotropic) evolution starting, say, 
from a circular column, would involve the wrapping around of planetary vorticity 
contours followed by an elliptical deformation (see e.g. Sutyrin et al. 1994). As the 
latter gives rise to horizontal straining and horizontal straining is a crucial ingredient 
of the tall-column instability, a tall column in a planetary vorticity gradient may also 
break down into baroclinic surface vortices. This is at present under investigation. 

There are also questions about the effect of vertical environmental shear (e.g. a uni- 
form flow increasing with height), varying PV up the vortex column (which is thought 
to occur in the polar stratospheric vortex), and non-uniform horizontal distributions 
of PV (e.g. a Gaussian core). Work is underway to explore these questions. 
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